Feeds:
Posts
Comments

Reduce Transactional System Complexities to Fund Your Next Innovation

Businesses today cannot operate without data—not even for a moment.

  • Businesses once had the upper hand, but today consumers have gained tremendous power. Increased choices, lower switching costs and easier access to product information have empowered customers to make more informed decisions and compare alternatives more easily. It has become extremely important for organizations to understand and anticipate customer behavior and needs using all available sources of information, including social media.
  • The situation is further complicated as organizations are expected to do more with less. Organizations need to optimize their processes and IT resources to create new opportunities, to mitigate risk, and to increase efficiency.
  • Every day, incredible amounts of diverse data are being generated, ranging from online clicks, transactions and machine-generated sensor data to social media posts, emails and videos. Businesses understand that collecting, processing and embedding this constantly growing stream of both structured and unstructured data into daily operations is key to meeting emerging challenges and uncovering new opportunities. In short, analyzing big data brings success. This is the new reality. Embracing analytics is now a requirement for successful organizational performance.

What is needed for IT organizations to meet today’s top challenges?

  • Handle more data, faster
  • Simplify set up, use and maintenance
  • Support existing systems
  • Use existing skills and don’t require application code changes

In short, make it super fast, super easy…   …and have it deliver super savings.

PureData System for Transactions is a highly available, large scale database appliance that helps you reduce time, effort, cost and risk to design, procure, integrate, and deploy highly available transactional database services.

Database Appliance:

  • Reduce time, work effort, cost and risk to design, procure, integrate, and deploy non-stop data services
  • Fast deployment of high availability clusters and databases

High Availability / Scalability:

  • Improve uptime and reduce downtime costs
  • Simplified disaster recovery
  • Scale out to handle growing data

Infrastructure Efficiency:

  • Consolidate many databases onto a single system
  • Reduce data center costs: space, power, cooling
  • Reduce storage costs

IT Administrator Productivity:

  • Application transparency; no application changes
  • Simplified self-management lowers IT staff time
  • Leverage existing skills

Find out more about PureData System for Transaction. Attend one of our seminars on: “Reduce Transactional System Complexities to Fund Your Next Innovation.” Click here to see the dates, locations and agenda.


Oh no! The next “big data” project is coming!

Your IT infrastructure has grown and evolved over many years and is the heart and soul of how your company operates. You’ve invested years to get it to where it is today – it’s running smoothly, and you consider your IT staff to be the very best at what they do. But deep in your heart you have an uneasy feeling…you know what’s coming next.

There is a backlog of projects on your plate. Important projects that will improve your company’s bottom line. First-mover projects that will tap into “big data” and empower your line of business managers to pursue new markets and get a jump on your competitors. But you know that your infrastructure can’t handle much more and that your staff can’t keep up with performance tuning and the few projects that are currently in the works.

The CEO just requested a meeting for next week. You know another significant big data project is coming, and this is just the tip of the iceberg for what’s coming later this year. On your drive home you ask yourself, “How can I possibly take on more projects, and more data? How can I change my infrastructure so I can deploy new applications faster? How can I shift my staff from tuning and maintenance to focus on higher value work?”

Workload optimization with expert integrated systems

As more servers, storage and software components have been brought into the data center, complexity has risen to the point of being almost unmanageable. General purpose systems have been forced to handle multiple workloads, and teams of database, application and system administrators spend a great deal of time and effort configuring, tuning and maintaining the systems for top performance and efficiency. With such a complex infrastructure, reliability often suffers and system downtime becomes a serious business risk.

At the crux of the issue is that different applications have different data workload characteristics, placing often conflicting requirements on the hardware, storage and software. Transaction and analytic processing tasks constitute very different workloads. Unless your data workloads are modest with respect to characteristics like data volume, number of users and analytics complexity, you need systems optimized in different ways to efficiently meet big data challenges.

Typically, IT organizations purchase general purpose systems that are not optimized for any workload – systems that are general purpose in nature. They tune these systems for one workload or the other, and spend considerable time and effort keeping the system tuned.

But what is good tuning for one type of workload is not good for another. Data retrieval optimizations that benefit one access path are likely to penalize alternative paths. The structural elements that were optimized for transactions, for example – indexes, shared memory, locks, caches, etc. – all impose performance and complexity penalties in an analytic environment, where unpredictable (“against the grain”) access paths and patterns are the rule.  Systems that are optimized to handle structured data are different than those that handle a wide variety of unstructured or structured data.

Separating transaction processing and analytic processing onto separate, workload-optimized systems helps ensure that overall performance is optimized. Data transaction systems can process large numbers of simple look-ups, while analytic systems execute complex queries on massive volumes of data.

There is a great opportunity to improve system performance and efficiency, and to accelerate solution deployment, by using expert integrated systems that come from the factory already optimized for specific workloads. And this is why IBM designed and built the PureData System with different models that are specifically optimized for different transaction processing and analytic workloads.


Thank you Vincent for sharing this interesting article on predicting future home values. http://www.analyticbridge.com/profiles/blogs/here-s-what-your-home-will-be-worth-in-12-months?goback=.gde_4520336_member_226716431

I’d like to tell a story, though, that may help predictive modelers take extra caution.

If anyone understands the “real” state of the housing market, this is one market where predictive models can fail miserably, and Zillow is not immune. Predictive models and forecasting can work well in normal market conditions and can be indicative in “almost normal” markets where major influencing factors can be well understood, as well as when the forecast period is relatively short.

housing bubble

Housing bubble

But trying to use predictive models in abnormal markets, when core assumptions on predictive elements may be inaccurate, when new, complex relationship factors are not well understood, when one-time disruptive events cannot be assessed…well, that’s where things can break down in a hurry. Bottom line: make sure your model is sound, considers the right variables, and is tested and retested over time before you rely on its results.

Zillow’s model:

The Zillow Home Value Index is the median value of a home for an area. The Zillow Home Value Forecast is Zillow’s prediction of what the Zillow Home Value Index will be one year from now. Zillow uses data on a number of housing indicators as well as general economic indicators. The housing indicators include the mortgage interest rate, property tax rate, construction costs, number of vacant homes, percentage of loans that are subprime, percentage of delinquent loans and supply of homes for sale. The general economic indicators include the change in household income, population growth and unemployment rate.

Underlying factors that make this real estate market anything but “normal”:

The FED‘s easy money policies of the past (which affect the financial markets across the board) created excess money that found its way into the hype of the dot-com’s. When the truth was exposed, the dot-com bubble burst. Over time, continued easy money policies kept excess money in play, which found its way into real estate. Lenders saw a once-in-a-lifetime opportunity, threw risk to the wind and created sub-prime mortgages for the ‘high risk of default’ market.

The gov’t also saw an opportunity for political pursuits (and yes, for economic growth), and they created massive programs that encouraged home ownership for lower income households. These two factors had a multiplicity affect, raising the % of home ownership from ~65% to ~69% in a relatively very short order. The feeding frenzy caused a very abnormal increase in prices, and countless homeowners tapped into their equity to finance their high consumption lifestyles.

Lenders saw an even greater opportunity to package up loans, securitize them (turn them into stocks, essentially), and sold big bundles of them to unsuspecting investors, oh ya, with regulatory agency encouragement. Now, lenders freed up their capital reserves to do more loans, and they had sold their risk (especially sub-prime risk) to others. Happy times for lenders, happy times for the gov’t, and happy times for homeowners…until the real estate bubble burst.

Real estate prices fell rapidly. Real people lost their jobs, tightened their belts and curbed consumer spending, affecting the entire economy. Delinquencies increased (go figure!), foreclosures increased (go figure!), unemployment climbed (go figure!). Lenders tightened lending standards too much. The gov’t bailed out many who had their hands in the cookie jars. But the FED kept on truckin with easy money, abnormally low interest rates, economic easing and bond buy-backs to try to stimulate a crippled economy. (Now, the bubble is gov’t debt, but that’s another story.)

So, today’s real estate market: First, lenders are not processing delinquencies and foreclosures in the way they should, because they don’t want to show any more homes on their books. Many families (more than you can believe) have lived scott-free for 12-18-24 months or more – not paying their mortgage, knowing that their lender is not pressing forward with their foreclosure. Second, lenders are slow to process short sales (lender allows the homeowner to sell for less than the outstanding principal, so the lender does not get fully paid out at closing). Third, lenders (and the gov’t – HUD, etc.) already have a huge inventory of REO properties (called the shadow inventory), and they certainly don’t want any more.

But here’s the rub…they are not processing these properties and not putting them back into the market as they should… and THIS is causing an inventory shortage in some areas (e.g. So Calif), causing prices to climb back up. Think of the affect this has on a predictive model – what would happen to home prices if the lenders and gov’t dumped their shadow inventory? Some say the banks want prices to go back up before they dump their inventory. I think bigger, hidden motives are underlying this move. The media and politicians have jumped all over this, claiming that the real estate market is in full recovery.

Looks good for the real estate market. Looks good for the economy.  Looks good for lenders, the FED and the gov’t. “Things have improved. The housing market is firmly on its road to recovery. The housing market is strong. etc.”

But it’s all artificially created, resulting in a highly abnormal market with extreme uncertainties – the FED’s ultra-low interest rates, the FED’s easing policies and bond buy-backs, still strict lending standards, lender’s immediate resale of a mortgage to free up more capital for more loans (retaining absolutely zero risk), CDO rating agency conflicts of interest, huge shadow inventory kept out of the market. Also, huge hedge funds (example here) are now getting into real estate and buying up thousands of residential properties, for cash, completely disrupting local markets and typical real estate investor business models (who, by the way, offer a tremendous stabilizing value to the real estate market as a whole, but are much maligned by the media, lenders and the gov’t). What affect do these hedge funds have in the predictive model?

And oh, let’s not forget about the real unemployment rate (see www.bls.gov and http://www.bls.gov/data/#unemployment …the gov’t and media should report the U6 number, not U2…PLEASE, go to bls.gov and read about the real U6 unemployment situation…don’t rely on the media), the current trends on personal income and consumption, total consumer debt obligations, changes in payroll taxes and other taxes schedules and loopholes, the affect of Obamacare on household incomes, etc etc etc. And let’s throw in the changing demographics and psychographics of our population – age, income, employment uncertainty, frequency of moving, disposition to owning vs. renting, and how everyone is processing the never-ending stories that seem to come out of the media and our politicians.

OK, enough of all that…back to predictive models and forecasting. How many variables mentioned above are taken into account in the Zillow predictive model on home prices?? Are they using U6, not U2 unemployment numbers? Are they considering the shadow inventory of REOs and the affect this has on local inventory and prices, and when lenders might dump them back into the market, disrupting both inventories and prices? What are their assumptions on the FEDs policies and how long they will keep interest rates artificially low? Are they accounting for the dramatic volume of purchases by hedge funds, and how that affects local inventories and prices?

I honestly do not know the details of how Zillow accounts for all the data relationships in their model, but I hope they consider more than U2 unemployment numbers, basic inventory numbers of listed homes, current interest rates, and average sales price.

Point is, there is a LOT to consider in developing a predictive model, and there are often many underlying factors to consider. Only a few (unpopular) economists predicted the extent of the real estate bubble and its unsustainable track. And even fewer can predict its recovery, given the introduction of many more pervasive underlying factors that were not considerations a decade or so ago. The real estate market is in unchartered territory…be careful about any predictive models…and be careful what you read in the media!


Big data requires extreme workloads

Read Using Big Data for Smarter Decision Making by Colin White.

Big data involves more than just the ability to handle large volumes of data. It also represents a wide range of new analytical technologies that opens up new business possibilities. But before reaping the rewards of big data analytics, there comes a set of challenges around deploying new technologies into existing data warehouse environments and providing systems that optimize computing performance for different workloads.

As I explored in my recent posts on smart consolidation, the data warehousing and analytics environment is more complex today than even just a few years ago. Many have found that mixing operational analytics and deep or advanced analytics on the same system brings significant challenges to performance and meeting SLAs. With operational analytics, business managers need continuous data ingest and fast access to standard reports with the ability to perform ad hoc queries that drill down into the data and provide new perspectives and insight. When a deep analytical query comes along that requires significant data volumes and extreme computing resources, operational query performance suffers. Big data adds yet another complexity around data sources, data quality, longevity of the data, and whether some of the big data should be integrated into the enterprise data warehouse for longer-term historical analysis.

The best way to handle these different types of workloads is to optimize systems to the workload, and combine these solutions with the enterprise data warehouse to create an “analytical environment”. We see many types of optimized systems in the market today – data warehouse appliances, data marts, noSQL systems, Hadoop-based systems, streaming data analytical systems, cloud-based solutions, etc., that complement (not replace) the enterprise data warehouse. Each system is optimized for a specific workload, and used together they can help streamline and provide fast response to a wide variety of business needs.

A majority of organizations today already understand this – really, optimizing computing resources to various types of data and associated workloads is nothing new. At some point in the data warehouse and analytical environment evolution, organizations reach a tipping point that drives separation of data and workloads. Data growth and new sources of (traditional) data, an increased number of users, increased complexity of queries, and “big data” are all drivers of this tipping point.

Colin White of BI Research wrote a white paper exploring new developments in data warehousing and analytics and the benefits that analyzing big data brings to the business. The paper also reinforces this notion of optimizing systems based on the types of data and workloads. The conclusion – integrating these systems together into a single analytics infrastructure drives smarter and faster business decisions. Read Using Big Data for Smarter Decision Making.


A modern data warehousing and analytics architecture

Consider the example of a credit card company.When a customer applies for a credit card, the sales department collects the customer’s details and financial history, and the compares it to historical data from third-party reporting agencies to determine the customer’s ability to manage and repay debts. The customer data flows to the marketing department, where it is analyzed for trends and compared with opinion content collected from the Internet to make decisions on promotional campaigns.

Eventually, the customer might request a credit-line increase, at which time the customer service system will recommend up-sell opportunities and the lending department uses the customer’s payment history to evaluate the request. Meanwhile, the company’s online transaction processing (OLTP) systems are fielding millions of transaction authorization requests per minute. Real-time analytics systems are looking for anomalies that may indicate fraud by comparing the streams of transaction data to patterns developed by analyzing customers’ purchasing histories. As all this data ages and becomes more static, it shifts to archival systems and is stored using specialized technologies like Apache Hadoop—yet it remains available for instant auditing and long-term trend analysis.

At the same time, the marketing department is investigating a new customer segmentation model to use in an upcoming product launch. Marketing has been busy analyzing their complete customer database to determine online banking trends as well as smart phone and mobile banking adoption rates. After many iterations of their segmentation model, they believe they have identified the data elements and customer behaviors that define a financially sophisticated and technologically savvy customer segment. Now, several months prior to the launch, the product manager is running predictive models to test the business case on combinations of marketing messages and user adoption rates. The team is free to test and retest their assumptions, even though their queries take a long time to execute, because they are running on an analytics-optimized data warehouse appliance—not the primary operational analytics system.

The credit card company is taking advantage of distributed data and a distributed workload architecture. By intelligently separating workloads, it is able to creatively analyze data to identify new business models, test assumptions for new paid services and optimize launch and execution plans without impacting the daily, hourly and up-to-the-minute operational needs of its core business.


Many companies have found success in building data warehouses that meet basic needs, but are now finding they need to move beyond the back-office warehouse to leverage information on the front lines of decision making throughout their entire company. They need information on demand and need the ability to build systems that can deliver on those promises with real incremental returns.

For those who understand the power of an analytics-driven organization, this is a most exciting time. The opportunities are limitless: customers, prospects, suppliers and the business itself are creating endless geysers of data. Analytics tools are inexpensive, widely available and so easy to use that they make business sense in almost any situation.

To move forward, organizations need a strategy that delivers on several focused business requirements:
1) Operational management: Accelerate time-to-market to meet business SLAs for new and existing business processes, operational analytics and business intelligence (BI).
2) Big data: Leverage unstructured data, social media and other “big data” information sources to gain more insights from more data—without impacting the business SLAs.
3) Predictive analytics: Forecast future trends and analyze risks and potential outcomes.

Many IT organizations are adopting a strategy called smart consolidation that reconciles the need to simultaneously distribute data warehousing and analytics capabilities and infrastructure while centralizing management. Smart consolidation is a method for evolving an existing data warehouse architecture to meet today’s demanding analytic needs, such as big data, streaming data and unstructured data.

In a nutshell, it involves thinking beyond the traditional warehouse structures that have provided great success with structured data, basic reporting and analysis. Smart consolidation is driven by these four goals:

  1. Consolidate and govern enterprise data
  2. Optimize workloads for performance and SLAs
  3. Simplify the delivery of analytics by leveraging appliances
  4. Flexibly extend analytic capability as needed

The basis for smart consolidation is to completely optimize an analytics architecture by placing the right workload against the right data, in the right place, at the right cost and the right performance level.

Smart consolidation acknowledges that an organization requires different types of databases, analysis tools and data formats. It needs traditional data warehouses, data warehouse appliances and operational BI systems that can accommodate different types of workloads. It also needs systems based on advanced technologies that can efficiently handle data that is moving extremely quickly as well as large volumes of data that does not change frequently.

Single system? I think not

No single, data system could efficiently serve all these requirements and perform well for both transactional and analytical workloads. Under the smart consolidation strategy, multiple specialized elements use industry standards to communicate and join together to form a fluid, agile data ecosystem that delivers business insight, cross-organizational data governance and centralized IT resource management. By allowing many different elements to serve specialized needs, smart consolidation also enables organizations to accommodate the endless variety and rapidly growing ocean of semi-structured and unstructured data.

Bigger data?


Data will always lead information, always has, always will. Years ago, we created more data than we could analyze and understand at the time. Today, the same. Tomorrow, the same. The amount of data being created will always lead the ability to get information and understanding from it.

“Big data” is a leading edge description of having more data than can be processed into information, analyzed and understood. Many definitions of big data exist, let’s say 100TB or bigger for the sake of arguement. The volume, variety and velocity of data today is certainly accelerating, no question about that. But go back a couple of decades, and we could have made the same statements every year.

Leading companies in the big data space have solutions available today that can tap into an unprecedented amount of data. Petabyte-scale data warehouses, although not pervasive, are nothing new. Assembling the data is one thing, but analyzing it, presenting it and governing it is another. THE leading company has assembled a full “platform” covering the full breadth – operational analytics, deep / advanced analytics, predictive analytics, federated analytics, Hadoop analytics, streaming analytics… complete with end-to-end information governance.

Here is a sampling of big data use cases. Just skim through this and it’s sure to get your creative juices flowing on what CAN be done in your company. http://public.dhe.ibm.com/common/ssi/ecm/en/imc14715usen/IMC14715USEN.PDF 

Once you’ve skimmed through this, come back here and post your comments on 1) how you are currently using big data today, or 2) what you would like to use big data for.

And you know what? Years from now, the amount of data available will still outpace the ability to analyze it. At that time, will we call it “bigger data”?


Big Data

Big Data (Photo credit: Kevin Krejci)

In the case of big data, “Build it and they will come.” The building of big data is the explosion of information, partly made possible by the Internet, partly by massive storage at low cost, etc etc etc, these factors are quite well known and discussed.

But in the ever-competitive business climate out there, aggressive and agile line of business managers have developed a passionate thirst to mine all that data for the next competitive advantage – be it a new business model, tapping into emerging markets, finer customer segmentation, real-time marketing offers, reducing customer churn, fraud detection, customer sentiment analysis…the list goes on, bounded only by the creative juices of business leaders that want to succeed and win…meaning, there is no bound to the potential uses of big data.

What is exciting right now is the “perfect storm of big data.” It is here, and whipping up little tornados all over the place. It is an exciting time to be in this space!!!


Find out more: http://www-01.ibm.com/software/data/infosphere/warehouse/
Find out more: http://www-01.ibm.com/software/data/db2-warehouse-10/

Scenario: A retail store is now able to predict and replenish its merchandize stock by operationalizing an automated process flow. The retailer can analyze inventory data and product stock levels in real time. By deploying IBM InfoSphere Warehouse to reduce decision latency, the store’s accelerated decision-making capability now effortlessly keeps pace with the speed of demand.

Key benefits of InfoSphere Warehouse v10:
Faster Insights

  • Real-time Business Intelligence as operational data is continuously being feed into the warehouse.
  • Faster, accurate decision making, turnaround times.

Improved Cost Efficiencies

  • Adaptive Data Compression provides on average 30% improvement (up to 75%) over IBM’s existing Deep Compression.
  • Multi-Temperature Storage allows you to optimize data storage cost-efficiency.

Higher Performance

  • Star Schema optimization delivery for quicker response times – delivering 3x performance on BI workloads.
  • Continuous Ingest of data optimizes loading of data leading to faster decision making.
  • High Availability Operational access concurrent with analytics.

Increased Team Productivity

  • Built-In Time Travel query enabling faster historical and trend analytical queries.
  • Row and Column access controls to support multiple tenant operational warehouses.
  • Native Bi-Temporal support improves developer and DBA productivity.

Find out more: http://www-01.ibm.com/software/data/infosphere/warehouse/

Facing the limitations that can hamper access to insight

Many existing data warehousing solutions have limitations, such as a lack of real-time operational data, that make it difficult for organizations to fully leverage the power of information. 

  • Limited reach: Business users need to access and analyze a broad array of information, from the unstructured information in call center notes, emails and blogs to the structured information in databases, spreadsheets and other data sources. Yet current infrastructures often have limited reach. The proliferation of transaction systems and the emergence of new data sources available outside the business force users to cast a wide net to gather the information they need to support better decision making.
  • Limited access: Enterprises must deliver useful and timely information to more people as part of everyday business processes to drive innovations and reduce costs. Business intelligence (BI) and analytics tools can help, but only if they are widely available rather than limited to high-level decision makers and specialized analysts.
  • Limited depth: Many existing information infrastructures also have limited depth. Often business users are unable to get answers to complex ad hoc questions. IT teams need flexible tools that can capture and deliver more types of information in the way that users need it, when they need it, where they need it and how they need it.
  • Poor flexibility: Older BI systems may restrict the type and quantity of data that certain users can access. Organizations need ways to support a large numbers of diverse users and enable those users to quickly and easily customize how they receive information based on their specific needs.
  • Poor responsiveness: In many cases, existing information systems lack the responsiveness required by today’s business landscape. Organizations can gain a significant advantage over competitors if they can quickly analyze a wide range of information and deliver actionable insights to executives and frontline decision makers. They need solutions that can be implemented swiftly and then deliver rapid results.
  • Excessive costs and complexity: Some BI solutions can be costly to acquire, difficult to deploy and complex to manage. Organizations need solutions that can be implemented quickly and include capabilities that streamline administration and lower the overall cost of ownership.
  • Lack of real-time operational data: Without the availability of accurate, real-time operational data, business decision making can stall and organizations may miss identifying opportunities and insights. Several factors contribute to a lack of real-time operational data. For example, archaic extract, transform and load (ETL) processes can lead to delays in capturing operational data into the data warehouse. Performance overheads in handling heavy workloads and complex queries from the data warehouse for analytics processing can also cause problems. Within the data warehouse, non-responsive resource allocation according to the priority and criticality of data can slow analytic results.

Organizations must address these challenges and work to achieve on-demand access to insight. If they succeed, they can target smaller customer segments and communicate with them about their individual needs and wants. They can identify and capitalize on even the smallest trends, attaining competitive advantages normally only realized by more flexible and dynamic businesses. They can detect small behavior patterns that can have a significant influence and impact on business in terms of revenue, expenses and growth. Most important, they can build competitive strategies around data-driven insights and generate impressive business results.

Gaining insight without boundaries using IBM InfoSphere Warehouse

Through dynamic warehousing, IBM helps organizations extract insight from virtually any type of data—helping to deliver the right information at the right time and in the right context so business leaders can make the right decisions quickly. IBM dynamic warehousing solutions integrate data warehousing and business analytics to help define an organization’s central business concepts and the data required to support those concepts. These solutions allow organizations to pull data from a variety of enterprise and source systems that traditional BI and data warehousing solutions have not been able to access in the past. As a result, IT organizations can better support business requirements for actionable information. This information is not just raw data but data backed by intelligence that can help people take action and make sound business decisions.

IBM InfoSphere Warehouse is a complete, multipurpose environment that allows organizations to access, analyze and act on operational and historical information, whether structured or unstructured. With InfoSphere Warehouse, organizations can gain the insight and agility they need to generate new opportunities, contain costs and satisfy customers. Unlike traditional data warehouse and BI solutions, which may be complex and inflexible, InfoSphere Warehouse simplifies the processes of selecting, deploying and maintaining an information management infrastructure while offering the flexibility for dynamically integrating and transforming data into actionable business insights. It enables organizations to centrally, accurately and securely analyze and deliver information as part of their operational and strategic business applications.


Find out more: http://www.ibm.com/software/data/infosphere/warehouse/
Virtual Conference: https://events.unisfair.com/index.jsp?seid=33250&eid=556 

IBM InfoSphere Warehouse is a complete real-time data warehousing platform that delivers superior scalability and availability, design, build, and management tooling, and business analytics. It provides a complete, multipurpose environment that allows organizations to access, analyze and act on operational and historical information, whether structured or unstructured.

With InfoSphere Warehouse, organizations can gain the insight and agility they need to generate new opportunities, contain costs and satisfy customers. Unlike traditional data warehouse and BI solutions, which may be complex and inflexible, InfoSphere Warehouse simplifies the processes of selecting, deploying and maintaining an information management infrastructure while offering the flexibility for dynamically integrating and transforming data into actionable business insights. It enables organizations to centrally, accurately and securely analyze and deliver information as part of their operational and strategic business applications.

New and enhanced features of version 10:

One of the driving motivations behind this new version 10 is the desire to accelerate time-to-insight so that decision makers throughout an organization can make faster (and better) business decisions. Accelerating time-to-insight focuses on two key areas: 1) the latency of data ingest, and 2) the analytics latency – time to perform analytics and provide insights to decision makers.

Business value is realized when a decision is made or action taken.

Reducing Latency improves business value by being able to make decisions faster.

Continuous ingest

In more traditional warehouse environments, additional data is loaded once a day, once a week or perhaps even once a month. InfoSphere Warehouse continuously ingests data from multiple sources throughout the organization while optimizing resource utilization across all the data sources.

Continuous ingest of data optimizes loading of data – not once per day, not once per hour, but continuously. This ensures that the most up-to-date data is used all the time – no more waiting for a nightly ETL process and scheduled reports to be run the next morning. This is a significant feature for companies where being first is critical – ha, I can’t think of any company that wouldn’t want to analyze fresh data and take action before their competitors!

Multi-temperature data management

As warehouses grow in size, storage costs escalate. At the same time, service-level agreements (SLAs) for warehouse access are becoming tighter for certain mission-critical warehouse information. Multi-temperature data management enables warehouse data to be spread across multiple tiers of storage, defined by performance or cost. The optimizer and workload management features use information about data priority to enhance query performance for hot data while reducing resources for lower-priority queries that access archival or cold data.

Faster performance delivers insights faster. Pretty simple concept. Multi-storage data management puts high priority, frequently accessed data in the fastest (hot) storage available to the warehouse, and of course, less frequently accessed data in warm and cold storage. This accomplishes two things – 1) for end users, queries run faster, and 2) for IT, it optimizes performance, storage and costs.

Storage savings and enhanced performance through adaptive compression

Adaptive compression improves on the leading compression technology found in prior versions of InfoSphere Warehouse by adaptively determining the optimal compression between row- and page-based compression. Using InfoSphere Warehouse 10.1, organizations can improve the compression ratio by nearly 30 percent compared with prior versions. By combining InfoSphere Warehouse and the terabyte charge metric (in which organizations pay for only the post-compression data volume), organizations now can store more raw warehouse data with less storage while enjoying improved performance to query that data. Adaptive compression eliminates the need to completely rebuild compression dictionaries as data grows and reduces the requirement to periodically perform table reorganizations.

Time travel queries through Temporal Table support

The relevance of data within a warehouse often degrades significantly over time. For example, knowing the specific updates to a customer’s record throughout the day may provide valuable insight into a customer’s activity patterns. Two days later, however, it may no longer be necessary to store same-day activities data within the warehouse. Temporal Table support enables organizations to enhance table definitions to define the relevance of transitional changes within the rows stored in the table. After changes reach a predefined threshold, historical (temporal) changes are removed from the table. Organizations can use temporal analytics to gain new insights into the patterns and transitory activities of their business—insights that were previously too expensive to manage or store within the warehouse.

Improved efficiency and performance for BI queries

To improve the speed of BI queries, InfoSphere Warehouse provides industry-leading efficiency in collating multiple data formats, including unstructured data. The result is a 3x or better performance improvement for standard, star-schema types of complex BI queries. Intelligent analytic query optimization helps reduce I/O to minimize resource requirements for heavy workloads.

Advanced security through row and column access control

Advanced access control allows organizations to restrict data access to certain users or groups. Administrators can decide to present only the data that users are allowed to see, or they can mask certain data, such as all but the last four digits of credit card numbers. Quick setup and standardization of security features simplifies security, enabling organizations to control, monitor and help ensure enforcement of security by the database. These security policies help reduce complexity for organizations trying to manage these policies and procedures within applications and business groups. Fine-grain access control capabilities also enable organizations to host multitenant warehouses while limiting access to a single tenant’s information, thereby leveraging resources across multiple warehouse clients.

Real-time operational warehousing

Using the features and enhancements of InfoSphere Warehouse 10, organizations can realize the benefits of real-time data warehousing and deliver greater business value through faster access to time-critical data. Historical trend analysis using temporal tables allows finer insight into business and market trends. By maximizing the utilization and prioritization of resources, organizations can achieve those benefits at a lower total cost of ownership.


Speaking at #tdwi World Conf in Vegas, Feb 12-17 – http://events.tdwi.org/events/las-vegas-world-conference-2012/home.aspx. Topic – “Changing Gaming with Data Warehousing and Analytics.” Will I see you there?

Description: The gaming industry is rich…with data…a lot of data. The key to turning data into money, however, lies in the strength and performance of the data warehousing and analytics implementation, and the creativity of those using the insights to make faster and better decisions. Attend this session to learn about IBM’s broad portfolio of Netezza data warehousing appliances, Smart Analytics Systems and InfoSphere Warehouse software. Find out how they can be used to better understand your customers, streamline operations and improve business outcomes.


Well, I have to admit. Using the retail sales of high heeled shoes to indicate growth or a downturn in the economy is bit out there. But after seeing IBM in the news this week, I decided to look into this a bit further.

And they are right; the height of high heels sold does provide an indicator of the current economic situation. In an economic downturn, data shows that the height of high heels goes up – evidently, women buy higher heels in an attempt to escape the reality of tough economic times. Surely, feeling better about yourself, feeling prettier, perhaps a bit of personal indulgence, does help one escape the feeling of being controlled (can’t escape a bad job), beaten down (unemployed), and even trodden upon financially (foreclosed).

I have spoken about retail analytics a number of times in recent months, and I have been using a graph to open my presentation that shows the rise and dramatic fall of U.S.consumer spending as a wake up call to those analytically inclined. Consumer spending is such a key part of the U.S.economy and the retail industry. And as I wrote about in one of my earliest blog posts, in good economic times, everyone makes money. But in these tough economic times with consumer spending at a similar level to 1997 (mind you, after a fairly significant increase from its recent low), it takes much more than luck to survive let alone prosper. It takes an “analytics-driven” attitude to survive and thrive.

“This time…something different is happening – perhaps a mood of long term austerity is evolving among consumers sparking a desire to reduce ostentation in everyday settings.”

So what will happen later this week on “Black Friday?” Will consumer spending be strong – hitting the $20 Billion mark on Black Friday as analysts at MasterCard predict, or will it limp along like a wounded duck? Is there enough pent-up demand after consumers have cut back so much in recent months, or is there a bright future on the horizon for retailers? Will the sales, promotions and advertising make a difference? Will hot ticket items like the new Kindle Fire be strong performers? What will happen to retailers that don’t sell hot ticket items?

There are a lot of questions here…. One thing, however, is certain. Many retailers that rely on gut feel may not make it. But those that mined their data, that used predictive analytics, and that extended themselves to analyze the “big data” of social media, well…they may hit the proverbial nail on the head.

Let’s see what shakes in the upcoming days. Stay tuned for more….

http://www-03.ibm.com/press/us/en/pressrelease/35985.wss


I coudn’t write a better blog posting than Larry Weber, one of my outstanding counterparts in evangelizing IBM Data Warehousing and Analytics solutions. So rather than write something different, I’d like to refer everyone over to Larry’s (the other Larry) blog to read more about our exciting new Smart Analytics System offerings and the Warehouse Packs Live demo that YOU can experience firsthand…on a tablet PC that a bunch of us will be carrying around the event. Come find one of us at the Data Management / Warehousing peds, or Demo Room, or BP Cafe, or in one of our countless business and technical sessions, or Ask The Expert and Birds of a Feather sessions, or Hands-On Labs, or…. Do you get the feel that we have A LOT going on at IOD 2011? Yes we do!! Come and see….!!

And READ Larry Weber’s blog! Ditto everything he says!

http://lawrenceweber.wordpress.com/2011/10/21/bad-marketer-en-route-to-iod/#comment-18


Packs Live!

IBM is showing a live demonstration of analytics on a tablet PC at the IBM IOD 2011 event in Las Vegas next week.

Utilizing IBM InfoSphere Warehouse, Warehouse Packs (pre-built models, algorithms, sample reports) and Cognos running on the new IBM Smart Analytics System 5710, YOU can see how EASY it is to get real analytics and real insight on a tablet PC throughout your organization, 24×7, where ever you are.

Find us at the Data Management and Data Warehouse and Analytics booths at IOD 2011 to learn more and experience it for yourself!

http://www.facebook.com/pages/IBM-Data-Warehousing-Analytics/210842598983143?v=app_192229990808929

%d bloggers like this: