Archive for July, 2012

Big data requires extreme workloads

Read Using Big Data for Smarter Decision Making by Colin White.

Big data involves more than just the ability to handle large volumes of data. It also represents a wide range of new analytical technologies that opens up new business possibilities. But before reaping the rewards of big data analytics, there comes a set of challenges around deploying new technologies into existing data warehouse environments and providing systems that optimize computing performance for different workloads.

As I explored in my recent posts on smart consolidation, the data warehousing and analytics environment is more complex today than even just a few years ago. Many have found that mixing operational analytics and deep or advanced analytics on the same system brings significant challenges to performance and meeting SLAs. With operational analytics, business managers need continuous data ingest and fast access to standard reports with the ability to perform ad hoc queries that drill down into the data and provide new perspectives and insight. When a deep analytical query comes along that requires significant data volumes and extreme computing resources, operational query performance suffers. Big data adds yet another complexity around data sources, data quality, longevity of the data, and whether some of the big data should be integrated into the enterprise data warehouse for longer-term historical analysis.

The best way to handle these different types of workloads is to optimize systems to the workload, and combine these solutions with the enterprise data warehouse to create an “analytical environment”. We see many types of optimized systems in the market today – data warehouse appliances, data marts, noSQL systems, Hadoop-based systems, streaming data analytical systems, cloud-based solutions, etc., that complement (not replace) the enterprise data warehouse. Each system is optimized for a specific workload, and used together they can help streamline and provide fast response to a wide variety of business needs.

A majority of organizations today already understand this – really, optimizing computing resources to various types of data and associated workloads is nothing new. At some point in the data warehouse and analytical environment evolution, organizations reach a tipping point that drives separation of data and workloads. Data growth and new sources of (traditional) data, an increased number of users, increased complexity of queries, and “big data” are all drivers of this tipping point.

Colin White of BI Research wrote a white paper exploring new developments in data warehousing and analytics and the benefits that analyzing big data brings to the business. The paper also reinforces this notion of optimizing systems based on the types of data and workloads. The conclusion – integrating these systems together into a single analytics infrastructure drives smarter and faster business decisions. Read Using Big Data for Smarter Decision Making.

Read Full Post »

A modern data warehousing and analytics architecture

Consider the example of a credit card company.When a customer applies for a credit card, the sales department collects the customer’s details and financial history, and the compares it to historical data from third-party reporting agencies to determine the customer’s ability to manage and repay debts. The customer data flows to the marketing department, where it is analyzed for trends and compared with opinion content collected from the Internet to make decisions on promotional campaigns.

Eventually, the customer might request a credit-line increase, at which time the customer service system will recommend up-sell opportunities and the lending department uses the customer’s payment history to evaluate the request. Meanwhile, the company’s online transaction processing (OLTP) systems are fielding millions of transaction authorization requests per minute. Real-time analytics systems are looking for anomalies that may indicate fraud by comparing the streams of transaction data to patterns developed by analyzing customers’ purchasing histories. As all this data ages and becomes more static, it shifts to archival systems and is stored using specialized technologies like Apache Hadoop—yet it remains available for instant auditing and long-term trend analysis.

At the same time, the marketing department is investigating a new customer segmentation model to use in an upcoming product launch. Marketing has been busy analyzing their complete customer database to determine online banking trends as well as smart phone and mobile banking adoption rates. After many iterations of their segmentation model, they believe they have identified the data elements and customer behaviors that define a financially sophisticated and technologically savvy customer segment. Now, several months prior to the launch, the product manager is running predictive models to test the business case on combinations of marketing messages and user adoption rates. The team is free to test and retest their assumptions, even though their queries take a long time to execute, because they are running on an analytics-optimized data warehouse appliance—not the primary operational analytics system.

The credit card company is taking advantage of distributed data and a distributed workload architecture. By intelligently separating workloads, it is able to creatively analyze data to identify new business models, test assumptions for new paid services and optimize launch and execution plans without impacting the daily, hourly and up-to-the-minute operational needs of its core business.

Read Full Post »

Many companies have found success in building data warehouses that meet basic needs, but are now finding they need to move beyond the back-office warehouse to leverage information on the front lines of decision making throughout their entire company. They need information on demand and need the ability to build systems that can deliver on those promises with real incremental returns.

For those who understand the power of an analytics-driven organization, this is a most exciting time. The opportunities are limitless: customers, prospects, suppliers and the business itself are creating endless geysers of data. Analytics tools are inexpensive, widely available and so easy to use that they make business sense in almost any situation.

To move forward, organizations need a strategy that delivers on several focused business requirements:
1) Operational management: Accelerate time-to-market to meet business SLAs for new and existing business processes, operational analytics and business intelligence (BI).
2) Big data: Leverage unstructured data, social media and other “big data” information sources to gain more insights from more data—without impacting the business SLAs.
3) Predictive analytics: Forecast future trends and analyze risks and potential outcomes.

Many IT organizations are adopting a strategy called smart consolidation that reconciles the need to simultaneously distribute data warehousing and analytics capabilities and infrastructure while centralizing management. Smart consolidation is a method for evolving an existing data warehouse architecture to meet today’s demanding analytic needs, such as big data, streaming data and unstructured data.

In a nutshell, it involves thinking beyond the traditional warehouse structures that have provided great success with structured data, basic reporting and analysis. Smart consolidation is driven by these four goals:

  1. Consolidate and govern enterprise data
  2. Optimize workloads for performance and SLAs
  3. Simplify the delivery of analytics by leveraging appliances
  4. Flexibly extend analytic capability as needed

The basis for smart consolidation is to completely optimize an analytics architecture by placing the right workload against the right data, in the right place, at the right cost and the right performance level.

Smart consolidation acknowledges that an organization requires different types of databases, analysis tools and data formats. It needs traditional data warehouses, data warehouse appliances and operational BI systems that can accommodate different types of workloads. It also needs systems based on advanced technologies that can efficiently handle data that is moving extremely quickly as well as large volumes of data that does not change frequently.

Single system? I think not

No single, data system could efficiently serve all these requirements and perform well for both transactional and analytical workloads. Under the smart consolidation strategy, multiple specialized elements use industry standards to communicate and join together to form a fluid, agile data ecosystem that delivers business insight, cross-organizational data governance and centralized IT resource management. By allowing many different elements to serve specialized needs, smart consolidation also enables organizations to accommodate the endless variety and rapidly growing ocean of semi-structured and unstructured data.

Read Full Post »

Data will always lead information, always has, always will. Years ago, we created more data than we could analyze and understand at the time. Today, the same. Tomorrow, the same. The amount of data being created will always lead the ability to get information and understanding from it.

“Big data” is a leading edge description of having more data than can be processed into information, analyzed and understood. Many definitions of big data exist, let’s say 100TB or bigger for the sake of arguement. The volume, variety and velocity of data today is certainly accelerating, no question about that. But go back a couple of decades, and we could have made the same statements every year.

Leading companies in the big data space have solutions available today that can tap into an unprecedented amount of data. Petabyte-scale data warehouses, although not pervasive, are nothing new. Assembling the data is one thing, but analyzing it, presenting it and governing it is another. THE leading company has assembled a full “platform” covering the full breadth – operational analytics, deep / advanced analytics, predictive analytics, federated analytics, Hadoop analytics, streaming analytics… complete with end-to-end information governance.

Here is a sampling of big data use cases. Just skim through this and it’s sure to get your creative juices flowing on what CAN be done in your company. http://public.dhe.ibm.com/common/ssi/ecm/en/imc14715usen/IMC14715USEN.PDF 

Once you’ve skimmed through this, come back here and post your comments on 1) how you are currently using big data today, or 2) what you would like to use big data for.

And you know what? Years from now, the amount of data available will still outpace the ability to analyze it. At that time, will we call it “bigger data”?

Read Full Post »

%d bloggers like this: